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A B S T R A C T

Objectives. This study investigated the cardiac autonomic profile and cardiopulmonary responses at rest 
and after maximal treadmill exercise testing with or without pre-exercise stretching. 
Methods. Eight men (age = 24.6 ±mm 5.5 years; height = 179 ±mm 4.1 cm; mass = 78.1 ±mm 3.4 kg; body 
mass index = 24 ±mm 2.5 kg/m–²; body fat = 18.9 #mm 4.3%) completed a maximal treadmill exercise test 
under two randomly ordered conditions: pre-exercise stretching (PES) and no stretching (CONTROL). 
Electrocardiogram (ECG) and respired gas analysis were continuously recorded at rest, during, and for 5 min 
following exercise testing. The stretching exercises for the PES condition consisted of six passive stretches 
comprising upper and lower body muscle groups performed three times each for 30 sec with 10 sec passive 
rest between repetitions. 
Results. The results indicated that the rMSSD was significantly (p < 0.01) faster for the CONTROL versus the 
PES condition during the 5 min following exercise testing. Additionally, significantly lower low-frequency 
power (PES = 3.20 ±mm 1.14 ms2; CONTROL= 24.65 ±mm 7.57 ms2; p < 0.001) and total power (PES = 23.57 
±mm 7.41 ms2; CONTROL = 195.90 ±mm 46.37 ms2; p < 0.001) responses were visually detected for the PES 
versus CONTROL condition following exercise testing. Anaerobic threshold was decrease in PES when 
compared to CONTROL conditions. 
Conclusion. These data indicate that PES promotes dysfunction in the tonic cardiac autonomic regulation 
as evidenced by delayed parasympathetic reactivation, during the initial 5 minutes of recovery following 
maximal exercise testing.

© 2013 Revista Andaluza de Medicina del Deporte.

R E S U M E N

Perfil autonómico cardíaco y respuesta cardiopulmonar después de una prueba de es-
fuerzo máximo con estiramiento antes del ejercicio

Objetivos. Este trabajo investiga el perfil autonómico cardiaco y las respuestas cardiopulmonares en reposo 
y después de las pruebas de esfuerzo máximo con o sin estiramiento antes del ejercicio. 
Métodos. Ocho varones (edad = 24,6 ±mm 5,5 años; talla = 179 ±mm 4,1 cm; peso = 78,1 ±mm 3,4 kg; índice 
de masa corporal = 24 ±mm 2,5 kg/m²; grasa corporal = 18,9 ±mm 4,3%) completaron una prueba de 
esfuerzo máximo en cinta bajo dos condiciones: estiramiento antes del esfuerzo (EAE) y ningún estiramiento 
(CONTROL). ECG y análisis de gas inspirado se registraron continuamente en reposo, durante y 5 minutos 
después de la prueba de esfuerzo. Los ejercicios de estiramiento constaban de seis estiramientos pasivos 
que comprenden los grupos de músculos superiores e inferiores del cuerpo. 
Resultados. rMSSD fue significativamente (p < 0,01) más rápida para la condición CONTROL frente a la 
condición EAE durante los 5 minutos después de las pruebas de esfuerzo. Respuestas de energía de baja 
frecuencia (EAE = 3,20 ±mm 1,14 ms2; CONTROL = 24,65 ±mm 7,57 ms2; p < 0,001) y de energía total (EAE = 
23,57 ±mm 7,41 ms2; CONTROL = 195,90 ±mm 46,37 ms2; p < 0,001) fueron significativamente más bajas en 
la condición EAE después de las pruebas de esfuerzo. El umbral anaeróbico se disminuyó en la condición 
EAE frente a la condición CONTROL. 
Conclusión. El presente estudio sugieren que el EAE promueve la disfunción en la regulación tónica 
autonómica cardiaca durante los primeros 5 minutos de recuperación después de las pruebas de esfuerzo 
máximo.

© 2013 Revista Andaluza de Medicina del Deporte.
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Introduction

Cardiopulmonary exercise testing is commonly conducted in clinical 

practice and provides substantial diagnostic and prognostic informa-

tion1,2. Furthermore, cardiopulmonary exercise testing incorporates 

breath-to-breath ventilatory analysis from which maximal oxygen con-

sumption (VO2 max.) is determined3. Moreover, cardiopulmonary exercise 

testing can be a predictor of cardiac dysfunction and can serve as an  

effective modality to monitor physiological responses following pre-ex-

ercise interventions. The analysis of heart rate variability (HRV) in time 

and frequency domains provides a noninvasive method to establish the 

autonomic regulation of the heart rate (HR), identifying inherent rhyth-

mic fluctuations in neural activity direct to the sinus node, and also al-

lows the determination of the parasympathetic and sympathetic fre-

quency oscillations to the heart4. Thus, the HRV assessment is considered 

as potential predictor of the risk for cardiovascular disease.

Static stretching is used to lengthen muscles and associated tendons, 

thus acutely reducing the elasticity of musculotendinous complexes. 

Static stretching that is repeated with sufficient frequency and intensity 

will enhance joint range of motion5,6. However, the utilization of static 

stretching as a warm-up modality has been questioned due to potential 

decreases in musculotendinous stiffness, and associated reductions in 

force and power production7.

Some studies suggest that stretch-induced decreases in force and 

power are neurologically related to the decreased sensitivity of muscle 

spindles and peripheral slackening of the musculotendinous unit8,9. 

With relevance to aerobic exercise, the activation of muscle spindles 

may signal the initial cardiac acceleration10 to meet greater coronary 

blood flow and metabolic requirements11. This response seems to be 

evoked by stimulation of groups III (mechanosensitive) and IV 

(metabosensitive) muscle afferents (according to the temperature, 

chemical and the mechanical environment) being favorable to a reflex 

increase in sympathetic nerve activity that promote a greater heart rate 

and arterial blood pressure12,13.

However, limited studies have examined the decrease in 

musculotendinous stiffness induced through pre-exercise stretching 

and the potential effect on cardiac responses during and following 

maximal cardiopulmonary exercise testing10,14. Therefore, the purpose of 

this study was to investigate the cardiac autonomic profile and 

cardiopulmonary responses to maximal treadmill exercise testing when 

preceded by pre-exercise stretching versus non-stretching conditions.

Methods

Subjects

Eight men [age = 24.6 ± 5.5 years; height = 179 ± 4.1 cm; weight = 78.1 ± 

3.4 kg; body index mass (BMI) = 24 ± 2.5 kg/m–²; body fat = 18.9 ± 4.3%] 

with at least five years of consistent participation in aerobic exercise (4 

times a week) were asked to participate in the current study. All subjects 

passed the Physical Activity Readiness Questionnaire – PAR-Q15 –, IPAQ16 

and signed an informed consent according to the Declaration of Helsin-

ki. All subjects were considered healthy on the basis of history, physical 

examination, and normal resting electrocardiogram (ECG). The experi-

mental procedures were approved by the Ethics Committee of the Fed-

eral University of Rio de Janeiro. The following additional exclusion  

criteria were adopted: a) use of drugs that could affect the cardio-respira-

tory responses; b) bone, joint or muscle diagnosed problems that could 

limit the execution of the resistance exercises; c) systemic hypertension 

(≥ 140/90 mm Hg or use of antihypertensive medication); d) metabolic 

disease; e) no achieving the target heart rate of 85% of maximal age-

predicted heart rate.

Body weight was measured to the nearest 0.1 kg using a calibrated 

physician’s beam scale (model 31, Filizola, São Paulo, Brazil). Height was 

determined without shoes to the nearest 0.1 cm using a stadiometer 

(model 31, Filizola) after a voluntary deep inspiration. Body-mass index 

(BMI) was calculated as body weight divided by height squared (kg/m–²). 

Body fat percentage (%) was estimated using the seven-site skinfold 

procedures according to Jackson AS and Pollock ML17.

Treadmill maximal exercise testing

All testing was performed between 1:00 and 3:00 PM. Subjects received 

a light lunch 2 h before the test. Coffee, tea and alcohol intake was pro-

hibited for 12 h and subjects avoided formal and strenuous exercise for 

48 h before testing. Tests were performed on a motor-driven treadmill 

(Inbramed 10200, Brazil) using a ramp protocol, wherein the rate of in-

crement in speed and inclination was determined individually by the 

subjects with the goal of reaching volitional exhaustion in approximate-

ly 8 to 12 min. The test was preceded by a 3-min warm-up followed by 

incremental increases in speed and incline at every 1-minute stage. The 

test was terminated when the subject stopped because of exhaustion. 

However, subjects were verbally encouraged to continue as long as pos-

sible. Subjects were allowed sufficient practice during preliminary test-

ing to become familiar with the treadmill. Ambient air temperature was 

22ºC to 24°C.

Testing was symptom limited and was terminated if subjects reported 

dyspnea, chest pain, or for medical reasons including horizontal or 

down-sloping ST-segment depression of ≥ 1 mm, ST segment elevation 

> 1 mm in non-Q wave lead, atrial fibrillation or supra ventricular 

tachycardia (suggestive of the left bundle branch block), abnormally 

elevated blood pressure response (blood pressure ≥ 220 × 120 mm Hg), 

fall in systolic blood pressure (> 20 mm Hg), variation in diastolic pressure 

under stress greater than 15 mm Hg, presyncope, severe arrhythmias, 

presence of extrasystoles, ataxia or ventricular ectopy (presence of 6 or 

more premature ventricular beats per minute in recovery) and 

development of bundle-branch block or Intraventricular Conduction 

Delay (IVCD) that cannot be distinguished from ventricular tachycardia3.

Passive stretching exercises

Pre-exercise stretching (PES) condition consisted of six passive stretches 

comprising upper and lower body muscle groups performed three re-

petitions each for 30 sec with 10 sec passive rest between repetitions. 

The passive stretching condition included:

1) Hamstring stretch each leg (supine position).

2) Standing pectoral stretch.

3) Quadriceps stretch each leg (supine position).

4) Standing levator scapulae arm stretch.

5) Calf stretch each leg (supine position).

6) Standing posterior shoulder capsule stretch each arm.

During each stretch, the range of motion was increased until the 

person subjectively perceived mild discomfort. After the stretching 

4



A. Souto Maior et al. / Rev Andal Med Deporte. 2013;6(1):3-8 5

The visual detection method was employed for anaerobic threshold 

(AT) determination at treadmill exercise testing. The visual analysis was 

performed by two observers with proven experience. The criterion for 

AT quantification was VE curve rising at an increasing rate relative to the 

increase in VO2 on the ergospirometer monitor18. The AT value was 

considered as the mean of the data obtained from the analysis by two 

observers.

Statistical analysis

Data were expressed as the mean ± standard deviation (Mean ± SD). A 

two-way ANOVA was used to assess differences in HRV, VO2, VE, and 

respiratory rates between the PES and CONTROL conditions. Bonferro-

ni’s post hoc were used to partition significant main effects. A Student’s 

t-test was used to assess differences within conditions (rest vs follow-

ing maximal exercise testing). The anaerobic threshold in the PES and 

CONTROL conditions was analyzed by unpaired student’s t-test. The 

significance level was set at p < 0.05. All statistical analyses were per-

formed using Graphpad Prism, version 5.0 (Graphpad Software Inc., San 

Diego, USA).

Results

Within conditions (e.g. PES and CONTROL), the RR interval, rMSSD, 

SDNN, NN50, pNN50, LF power, HF power, LF/HF index, total power, 

VO2, VE, and respiratory rates increased significantly from pre-exercise 

values. Between conditions, figure 1A shows the time course of rMSSD 

during the post exercise recovery. The rMSSD was significantly faster 

for the CONTROL versus the PES condition during the 5 min following 

exercise testing. However, at pre-exercise no significant difference in 

the rMSSD was detected in between conditions (CONTROL = 52.07 ± 

26.05 ms2; PES = 51.82 ± 26.37 ms2). Additionally, the mean values of 

the RR interval were not significantly different at pre-exercise between 

the CONTROL (1002 ± 82.78 ms) and PES (989.8 ± 85.94 ms) condi-

tions, respectively (fig. 1B). However, the RR interval was significantly 

lower (p < 0.01) following maximal exercise testing in the PES (367.9 ± 

10.20 ms) versus the CONTROL (433.2 ± 29.32 ms) condition (fig. 1B). 

The others variables of time-domain of the HRV (SDNN, NN50, pNN50) 

were not significantly different between conditions.

Figure 2 shows the LF/HF index, LF, HF, and total power for the 

CONTROL and PSE conditions at rest and following maximal exercise 

testing. Significantly lower LF power (PES = 3.20 ± 1.14 ms2; CONTROL= 

24.65 ± 7.57 ms2; p < 0.001) and total power (PES = 23.57 ± 7.41 ms2; 

CONTROL = 195.90 ± 46.37 ms2; p < 0.001) responses were visually 

detected for the PSE versus CONTROL condition following exercise 

testing (fig. 2 B and D). In contrast, the HF power and LF/HF index were 

not significantly different between the PES versus CONTROL condition at 

rest and following exercise testing (fig. 2 A and C).

There were no significant differences between the PSE and CONTROL 

conditions for any of the other cardiopulmonary variables assessed  

(figs. 3 A, B, and C). Figure 3 summarizes VO2 max (PES = 55.37 ± 3.54 ml/

kg/min–1; CONTROL= 57.70 ± 3.94 ml/kg/min–1), VE max (PES = 126.9 ± 

19.85 L/ min–1; CONTROL = 136.3 ± 19.60 L/ min–1), and respiratory rates 

(RR) maximum (PES = 49.08 ± 8.45 Breaths/ min–1; CONTROL= 49.30 ± 

8.84 Breaths/ min–1). However, during PES condition (25.7 ± 1.1 ml/kg/

min–1) was observed decrease of the anaerobic threshold (p<0.05) when 

compared to CONTROL conditions (28.8 ± 0.8 ml/kg/min–1).

regime was completed, the subjects immediately began treadmill ma-

ximal exercise testing. All subjects completed a maximal treadmill 

exercise test under two randomly ordered conditions: PES and no 

stretching (CONTROL). The second maximal treadmill exercise test 

occurred 72 hours following the first exercise test.

Heart rate variability

ECG was continuously recorded at a sampling rate of 1 kHz and ampli-

tude resolution of 12 bits using a 12-lead ECG monitor system (CONTEC, 

model 8000D, USA). A standard resting 12-lead ECG was recorded digi-

tally using the same equipment (response frequency 25 mm/s and 10 

mm/mV amplitude); all data were stored and analyzed off-line. Heart 

rate and the RR time series were extracted from 5-min pre and post 

treadmill maximal exercise testing. The HRV variables (time-domain 

and frequency-domain) were calculated using system specific algo-

rithms from analysis of the V5-lead recording (version Matlab 7.0, The 

MathWorks, Inc, Natick, MA).

The following time-domain of HRV variables were analyzed: the 

mean of all normal RR intervals during the 5-min. recording (RR);  

the standard deviation of normal R-R intervals (SDNN); the number of 

interval differences of successive NN intervals greater than 50 ms 

(NN50); the percentage of normal RR intervals that differ by > 50 ms 

(pNN50); and the square root of the mean of the mean squared 

differences of successive RR intervals (rMSSD)4.

For frequency-domain analysis, RR intervals time series were 

resampled to equal intervals by spline cubic interpolation method at 2 

Hz, and data were detrended by removing the mean value and the linear 

trend. The method for calculating the power spectrum was by Fast 

Fourier Transformation (Welch’s periodogram was employed to assess 

the 1024-point spectral with a Hanning window and 50% overlap). 

Spectral power was obtained by integrating the power spectrum density 

(PSD) function in the very low-frequency component (VLF: 0.0033 and 

0.04  Hz.); the low-frequency component (LF: 0.04–0.15 Hz); and, the 

high-frequency component (HF: 0.15 – 0.40 Hz). Total power was 

estimated as the area under the spectrum within these frequency 

ranges. Normalized HF [HFnu = HF/(total power – VLF) X 100], nor- 

malized LF [LFnu = LF/(total power – VLF) X100], and LF/HF index were 

calculated4.

Respired gas analysis

The oxygen consumption (VO2) mask and equipment were fastened to 

subjects after being positioned on the motor-driven treadmill. A face 

mask (Hans Rudolph V MaskTM) covered the mouth and nose and was 

attached to a bi-directional digital flowmeter and fastened to the sub-

jects with a mesh hairnet and Velcro straps. The respired gas analysis 

began by assessing the subjects at rest for five minutes with the Fit-

Mate-ProTM (Cosmed, Rome – Italy). To establish a resting state, the fol-

lowing variables were considered: resting VO2 at 3.5 mL/kg/min–1 and 

minute ventilation (VE) between 8 and 15L/min3. Heart rate was con-

tinuously monitored using a V5-lead ECG monitor system (CONTEC, 

model 8000D, USA) and measurements of VO2, VE, and respiratory rates 

were assessed every three complete respiratory cycles at rest, during, 

and after treadmill maximal exercise testing. The FitMate-ProTM system 

was calibrated prior to each individual test according to the manufac-

turer’s guidelines.
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Discussion

The purpose of the current study was to examine the effect of PES on the 

physiological responses to treadmill maximal exercise testing. The key 

finding was that VO2max, VE, and respiratory rates were not significantly 

different at rest, during, and following exercise testing irrespective of 

whether PES was performed. In agreement, some studies have demon-

strated no significant increases in maximal oxygen consumption with 

PES19,20. In contrast, another study that utilized more extensive PES and 

proprioceptive neuromuscular facilitation stretching only for the lower 

body muscle groups (7 exercises; 3 repetitions each for 30 sec) demon-

strated an increase in VO2max
14. Therefore, it appears that differences in 

the intensity, repetitions, and duration of stretching determine the  

effect on VO2 max during maximal exercise testing.

The concept of anaerobic threshold (AT) has been associated at a 

given work rate which an oxygen supply to the muscle does not meet 

the oxygen requirements and increases the dependence on anaerobic 

glycolysis for energy output18. With compensatory factor happen an 

increase in VE for eliminate the excess CO2 produced, consequently 

promote an elevation of VO2. In ours study, the AT was faster in PES 

when compared to no stretching condition. This response can be 

associated to sensibility of the group IV muscle afferents by changes in 

skeletal muscle metabolism, such as increase of lactic acid, promoted 

with stretching exercise12.

Limited studies have examined the profile of HRV with maximal 

treadmill exercise testing and pre-exercise static stretching. However, 

some studies commented that assessment of autonomic outflows has 

revealed that passive muscle stretch increases cardiac sympathetic 
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15% greater than vagal spectral power25,26. Additionally, this frequency-

domain variable seems to be quite stable, around 0.1 Hz, and its change 

may be related to specific modifications in sympathovagal balance4. 

Total power consists in the sum of frequency bands ranging from 0 to 0.5 

Hz and has also been found to indicate mainly vagal activity fluctuations 

at rest4,25. In the current study, significantly lower LF power and total 

power responses were visually detected for the PSE versus CONTROL 

condition following exercise testing. In relation to LF power, some 

authors consider that changes of frequency band can be a consequence 

of alterations of the vagal-cardiac activity causing fluctuations in the LF 

band and/or indirectly by changes of baroreflex sensitivity26. However, 

in present study, it seems that the decrease of LF power in PES following 

maximal exercise testing corroborated with the TP response, mainly 

with overall changes in the autonomic modulation rather than changes 

in the vagal modulation4,25,27,28. Our study is limited by the small sample 

size and gender, so further research should be extended to a larger 

population and both genders.

Conclusion

In conclusion, the results of the current study suggest that PES promotes 

dysfunction in the tonic cardiac autonomic regulation as evidenced by 

delayed parasympathetic reactivation, during the initial 5 minutes of 

recovery following maximal exercise testing. However, the PES protocol 

utilized in the current study (i.e. 3 stretches upper body, 3 stretches 

lower body, 3 repetitions each for 30 sec) does not promote significant 

changes in the maximum oxygen consumption. The delayed reactiva-

tion of the parasympathetic nervous system should be examined in fu-

ture research to determine potential positive or negative implications 

following maximal exercise testing.
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